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Abstract: Over the past decade or so mine site rehabilitation has become increasingly important. Indeed,
mining leases today include conditions relating to the preservation of the surrounding environment and the
rehabilitation of the mine site once the mining has been completed. There are two basic requirements of
mine site rehabilitation: (1) that the site is safe, stable and non-ercding at the end of the life of the mine; and
(ii} pollutants such as acid-producing waste be buried and capped with highly impermeable material. The
first of these requirements gives rise to the land surface reshaping problem which is defined as finding the
surface which satisfies the requirements (usually expressed in terms of wali slopes) and which minimises the
material movement. In this paper we consider this problem. An integer linear programming mode! is
presented. A solution method using the Lagrangian multipiier technique is proposed. Results from a small

producing mine are presented.
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1.  INTRODUCTION

In Australia mine site rehabilitation and the
adherence to specified environmental practices
during the operation of a mine and at the end of the
life of a mine are determined by myriad state
government legisiation as well as the conditions
contained within the individual mining leases, A
rehabilitation program for a mine-site should
encompass the following:

¢ Ensure the safety of the area.

Minimise erosion and creale stable aesthetic
landforms within the lease area.

e Ensure that the lease area is non-polluting in
terms of air {dust) and water emissions.

e Rehabilitate the site to restore it o its pre-
mining condition or to enable development of
the site in a manner agresable to the local
communities.

# Minimise the maintenance requirements of the
rehabilitated site.

In many cases it is difficult to achieve even the
first three of the above aims and the mine-site
remains a source of pollution for many wvears
beyond is closwe. However, ever-increasing
environmental awsareness has prompted many
rehabilitation programs and there are many
examples of success [Mine and Quarry

Rehabilitation in South Australia, 1988; Fawcelt
and Sinclair, 1997].

Mine-site rehabilitation requirements vary greatly
from site to site in Australia. The current practice
is that mining veids are not back filled [Hollands,
1997, Smith and Hillis, 1996] but waste dumps
and tailing ponds are rehabilitated to prohibit
environmental  pollution beyond the lease
boundary [Orr and Veivers, 1997] The
requirement to completely rehabilitate the mini-
site to its pre-lease condition is rarely enforced,
though in the United States this is becoming
increasingly common particularly in regions of
prime agricultural land [Williams, 1997].

The rehabilitation. process should be planned and
execuled in conjunction with the mining of the ore
body as rehabilitating 2 mine-site once the mining
has ceased is generally prohibitively expensive.
Waste material from the mine has to be assessed
and acid-producing waste has to be buried and
capped with highly-impermeable material to
prohibit acid mine drainage and the associated
pollution of adjacent waterways and ground-water
reservoirs [Orr and Veivers, 1997]. Clearly mine-
site rehabilitation entails extensive material
movement {millions of cubic metres) and careful
scheduling is required to optimise the process and
ntinimise this material movement, particularly the



double handiing of materials.

In this paper, the simple problem of achieving a
siable and safe landform with minimal materiai
movement is considered.  Given a particular
tandform (in this case a ming-site), the land surface
reshaping problem seeks to reshape this landform
to one which conforms to desired slope criteria,
with least material movement. The land surface
reshaping problem, as defined here, considers the
material in the landform to be uniform. The
different handling that would eventuate if the
material had different characteristics (e.g. acid-
producing, non acid-preducing, top soil) is not
considered.

The land surface reshaping problem is modelled
mathematically and an optimum solution method
is presented. The paper is organised as follows.
An integer linear programming formulation is
presented in Section 2. Solution methods are
discussed in Section 3. In Section 4 the
subgradient optimisation method is applied on the
Lagrangian relaxation model using data from a real
mine. Conclusions are presented in Section §.

2. FORMULATION

The economic viability of the modern day mine is
highly dependent upon careful planning and
management. The operation and management of a
large open pit mine having a life of several years is
an enormous and complex task. Optimisation
techniques can be used to resolve a number of
important problems that arise [see Caccetta and
Giannini, 1986, Caccetta and Hill, 2000]. The
“block model” is extensively used in optimisation.

2.1 Bilock Model

An important task in mine management is the
establishment of an accurate modet for the deposit.
Though a number of models are available, the
regular 3D fixed-block model s the most
commoenly used and is the best suited to the
application  of  computerised  optimisation
technigues Gignac, 1975]. This model is based
on the ore body being divided into fixed-size
biocks, The block dimensicns are dependent on
the physical characteristics of the mine, such as pit
slopes, dip of deposit and grade variability as well
as the equipment used. The centre of each block 1
assigned, based on drill hole data and a numerical
technique, a grade representation of the whole
block. Using the financial and metallyrgical data
the net profit of each block is determined.

To satisfy the mine site safety and stability
requirements, wall slope restrictions are imposed
on each hlock. These are given as a set {usually 4
to &) of azimuth-dip pairs. From these we can
identify for each block x the set S, of blocks which
must be removed before block x can be mined.
This collection of blocks x w S,, Is usually referred
to as a “cone”. It can easily be generated using the
minimum search pattern (MSP) algorithm of
Caccetta and Giannini [1988].

2.2 The Land Surface Reshaping Probiem

The landform to be shaped is represented by a
block model. The block model is defined so as to
include the highest and lowest points on the
surface and be of great enough extent so as 0
avoid any anomalies at the boundaries. Many
blocks are of course air blocks. The desived final
slopes are specified and may vary with azimuth as
waell as height throughout the block model.

The land surface reshaping problem may be
defined as specifying the surface which conforms
to the desired slope criteria which may be achieved
with the least material movement. The amount of
material removed {cuf) must be equal to the
amount of material deposited (fill) and this
material movement must be a minimum. This is
displayed pictorially in Figure 1.
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Figure 1. Schematic View of the Land Surface
Reshaping Problem.

We now formulate the land surface reshaping
problem as an integer Iinear programming
problem. For a model of N blocks, let x, be a
yariable corresponding to bilock n, n = L2,..N,
such that

{i, if a block n is above the reshaped surface,

0, otherwise.
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Let ¢, be a weight corresponding to the blocks of

the model defined as:
j— I, if ablock n is above the mined surface
(air block),
| 1, if ablockn is below the mined surface.

c

n

The objective function of minimising the material
movement can be written as:

>ex, .

n=1

Minimise

Linear constraints on block removal can be
introduced to ensure that the reshaped surface
conforms to the safe wall slope eriteria. A block
may only be removed if all its overlying blocks
have been removed. That is, the block
corresponding to a variable x; can only be removed
if all overlying blocks have been removed. More
specifically, if block j is an overlying block, then
we have the restriction x;— x; < 0. 1f each block in
the mode! has at most R overlying blocks and E is
defined to be an (N.R) by N dimensional mairix of
{0,1,-1} coefficients for the block removal
constrainis, then these constraints are given by

EX <0,
., Xx)' is an N element column

where X = (x;, X, ..
vector.

Suppose there are p blocks of positive weight
which are above the reshaped surface (cut) and m
blocks of negative weight which are below the
reshaped surface (fill}. If M is the total number of
blocks of negative weight then

N
2o, =(-)M-mj+p=-M+m+p.
n=t

N
So  minimising chxn is  equivalent fo
n=i

minimising the amount of material removed (p}
plus the volume filled {m), which is one of the
requirements of the problem defiition.

The other requirement is the necessity for the
amount of material removed to be equal fo the
amount of material filled, that is p = m. Since the
number of blocks above the reshaped surface

5]

[z xn] is M — m -+ p, this can be expressed as
na=t

requiring

M.

N
2 X, =

1=
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Thus the integer programming formuliation of the

land surface reshaping problem is:

Minimise CX (1
subject to
EX <0 )
and
N
Z X, =M {3)

ns
where X is a column vector with 0-1 components,
C=1(cy, Ca, ..., T} 15 @ row vector of costs and E is
the matrix defined eariier.

The above MILP formulation is in fact analogous
to the mining to a tommage {scheduling)
optimisation preblem considered in Caccetta and
Giannini {1990}, Thus solution methods for mine
scheduling can be used to solve the land surface
reshaping problem. We discuss these further in the
next section,

3. SOLUTION METHODS

The direct application of powerful MILP software
pacikages such as CPLEX will solve only small
sized problems and are unlikely to yield good
solutions to practical sized problems. Branching
algorithms utilizing the cutting plane method may
yield good solutions for practical sized problems.
In this section we detail how the Lagrangian
relaxation method can be used to obtain a solution.

We replace the equality {eguation 3) by the
inequalities:

i
3 x, <M (4)
net
and
N
-3 x, £-M. (5

Relaxing these consiraints by infroducing non-
negative maultipliers A, and A;, we can write down
the pbjective function for the resulting Lagrangian
refaxation problem as:

Maximise

mi(c}x,)ﬂh{gxe _«MJME[ng WMJ

=
(Ry = A, =c,0x; +{h, ~ 7, M

= —{C+AAYX + AM,



where A is an N dimensional row vector of ones
and L = &; - A, is the Lagrangian multiplier that
may take on positive or negative values. So the
Lagrangian relaxation problem may be stated as:

Maximise -(C 4+ AAX + AM {6)

subject to
EX<¢ {7

with E and X as previously defined.

Let JA) be the optimal solution of the above
preblem. Then the desired solution for the original

problem (1) — {3} is found by solving:
A =min {/(}): A unrestricted insize}  (8)

The solution to this dual problem is difficult
because of its discrete nature. In practice duality
gaps may arise. However, for a fixed A the
problem (6} — (7} has, as briefly explained below,
an identical swucture to the open pit mine
production scheduling problem [see Caccetta et al.,
1908] as well as the ultimate open pit limit
problem [Caccetta et al, 1991]. Note that {7)
specifies the wall slope requirements.

The ultimate open pit Hmit problem is that of
determining the contour which satisfies the safe
wall slope and which yields the maximum profit.
Mathematically, this problem can be formulated as
follows. Consider an ore body with N blocks. Let
p: be the net value (profit) of block i and §; the set
of overlying blocks associated with block i. The
ultimate pit limit problem can be writien &s:

N
Maximise > op.x, (9
i=|
subject o
x—x <0 foralliandj e S %y
and x= 0,1 forali: (1

Nete that (10) can be written as:

EX<0 (10"
where E is an appropriate matrix of {0,1,-1)
coefficients and X is a column vector of binary
variables.

From the solution of ($) — (11} we have the final
pit contour defined as:

P firxg=1}

The optimal contour I corresponds to the maximal
closure in a graph. In the graph model of an ore
body, each block is represented by a vertex, the
mining restrictions are represented by arcs (the arc
(x,y) signifies that block x requires the mining of
block y) and the value of a block is represented by
a weight on the vertex representing it. A closure
of graph is a subset of vertices with no arc directed
t0 a vertex not in the set. The value of the closure
is the sum of weights of the vertices in it. Thus the
ultimate pit limit problem can be expressed as a
graph optimisation problem.

The optimal contour can be effectively determined
using a network flow method or the Lerchs-
Grossmann algorithm [Caccetta et al., 1994]. For
a given A, the problem (6) — (7} s just the uitimate
pit limit problem with objective function
coefficients given by —(C + LA).

The production scheduling problem incorporates
additional constraints that relate to factors such as:
mill throughput; velume of material extracted;
blending requirements; stockpile capacity, and
various logistic censtraints.  Dualising these
constraints results in a problem with a similar form
to that of (63 — (7).

Optimisation metheds for solving the mine
production scheduling problem include: a number
of heuristics: branch and cut; and Lagrangian
relaxation [Caccetta and Hill, 2000; Caccetta et al,,
1998]. The most successful computational results
are those of Caccetta and Hiil [2000],

The Lagrangian relaxation problem (6) — (7} can
be tackied by the application of the subgradient
optimisation algorithm [Held et al, 1974; Sandi,
1979]. This is a numerical technique for solving
non-differentiable optimisation probiems. It
allows a sequence of A’s {or A, and A} to be
derived which eventually converges to produce an
optimal solution. Theoretically, it is guaranteed to
determine the optimai A, but in practice
convergence may be slow.

The computational problems that arise relate to
“duality gaps”. Caccetta et al., [ |998] implemented
the subgradient optimisation algorithm for the
mine scheduling problem. This same algorithm
can be used for solving the problem (6) — (7). The
only difference is that here A may be negative,

For a given A the relaxed problem is solved using
the network flow method. The Lerchs-Grossmann
algorithm can also be used and tends to be more
efficient for mines which have wall slope
restrictions that give rise to a large number of
elements {arcs) in the search pattern.
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4. COMPUTATIONAL RESULTS

We  have implemented the  subgradient
optimisation algerithm originally developed for the
mine scheduling problem [Caccetta et al., 1998).
Here we briefly discuss an application to a small
real open-pit mine. The actual block values were
scaled to protect the anonymity of the mine.

The block model consists of 28979 five meire
cubic blocks on 9 levels, 37 columns and 63
sections. The safe wall slope criteria for the pit are
55° to the north and south, 60° to the east and 30°
ta the west. The ultimate pit limit contains 611 org
blocks and 1231 waste blocks. The mine had a life
of 5 periods and a production schedule was
produced for the 5 periods using the subgradient
optimisation technigue along with a heuristic
[Caccetta et al., 1998]. The final pit contour was
reshaped as discussed below.

The subgradient optimisation algorithm is used to
adjust a single Lagrange multiplier L to obtain the
maximum solution of the objective function (6)
which satisfies the slope constraints as well as the

y
Z X, =M constraint. For this particular problem
ned

the optimum solution is obtained with a negative
A. This transpires because of the relative lack of
worth of the positive blocks in the model. For a
positive value of A the maximum pit contour does
not contain enough blocks to enable the

N
5 x, =M (ie. p=M) constraint to be satisfied.
n=l

The final pit is reshaped using two different
maximum slope criteria. The first case is for a
maximum allowable slope throughout the pit of
30°. The results from the reshaping process are in
Table 1. A duality gap with respect to the

n
an =M constraint is apparent. M is equal to
n=1

1443, the duality gap is between 1439 and 1461,
The better result has the number of blocks cut
equal to 304 and the number to be filled equal to
308. The original pit had a depth of' 9 blocks. The
reshaped pit has a depth of 6 blocks and is of much
greater extent laterally than the original pit.

This pit is also reshaped using a maximum slope
criteria of 15° throughout the pit. The results from
the reshaping process are in Table 1. The duality

M
gap with respect to the an =M constraint is

n=l
farger in this case. This is primarily because the
MSP associated with the 15° maximum slopes
contains more elements.

Table 1. Results of Reshaping.

Desired M 1443 ‘
Possible M’s 1439 1461
Number of Biocks Cut 04 1 318
- Number of Blocks Filled 308 300
Total (Cut + Filied) 612 | 618
{a) Slope 30°
Desired M 1443
Possible M's 1440 1484
Number of Blacks Cut 537 568
Number of Blocks Filled 540 327
Total (Cut + Filled) 1077 1093

{b} Slope 13°

5. CONCLUSIONS

This paper developed a mathematical formulation
of the important land surface reshaping problem.
A mixed integer linear programming model is
presented and solved using the subgradient
optimisation algorithm. The relaxed problems are
solved using the methods of the ultimate pit limit
probiem. A real mine is used to illustrate the
method.  The solution methodology presented
provides a fast effective tool which enables mine
planners to examine varicus reshaping scenarios.
it Is a considerable improvement on the currently
used procedures which are essentially manual.
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